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Uncertainty estimation of LiDAR matching
aided by dynamic vehicle detection and high
definition map

W. Wen, X. Bai, W. Zhan, M. Tomizuka and L.-T. Hsu✉

LiDAR matching between real-time point clouds and pre-built points
map is a popular approach to provide accurate localisation service
for autonomous vehicles. However, the performance is severely dete-
riorated in dense traffic scenes. Unavoidably, dynamic vehicles intro-
duce additional uncertainty to the matching result. The main cause is
that the pre-built map can be blocked by the surrounding dynamic
vehicles from the view of LiDAR of ego vehicle. A novel uncertainty
of LiDAR matching (ULM) estimation method aided by the dynamic
vehicle (DV) detection and high definition map is proposed in this
Letter. Compared to the conventional Hessian matrix-based ULM esti-
mation approach, the proposed method innovatively estimates the
ULM by modelling surrounding DV. Then the authors propose to cor-
relate the ULM with the detected DV and convergence feature of
matching algorithm. From the evaluated real-data in an intersection
area with dense traffic, the proposed method has exhibited the feasi-
bility of estimating the ULM accurately.

Introduction: LiDAR is a prevalent sensor for providing autonomous
vehicle (AV) [1] localisation service, using matching the real-time point
clouds with pre-built points map [2]. The uncertainty of LiDAR matching
(ULM) can be well estimated in traffic friendly scenarios. However,
excessive dynamic vehicles that are not included in the pre-built point
cloud map can cause occlusion of points map. This occlusion increases
the difficulty of ULM estimation. Regarding the current ULM estimation
methods, the literature review shows that approaches mainly include the
environment feature-based [3] and Hessian matrix-based [4]. The main
disadvantage of the previous researches is their assumption on modelling
the all the point clouds as static ones during the matching process. As a
result, this can introduce erroneous ULM estimation in scenarios with
dense traffic. The other stream of ULM estimation is to model the exist-
ence of dynamic objects by leveraging conditional observation model
(COM) [5]. However, the high computational cost is excessive.
Accordingly, this Letter presents a novel dynamic vehicle (DV) detection
aided approach to estimate the ULM in the dense traffic scene. Fig. 1
shows a case with six vehicles (marked as a green rectangle) surrounding
the ego vehicle (marked as a purple rectangle). As shown in Fig. 1, a rep-
resents the masking elevation angle (MEA) of the line connecting LiDAR
(atop the ego-vehicle) and roof of the dynamic objects. Essentially, MEA
can be a clue of ULM estimation. The main reason for this is that many of
the points in the pre-built points map can be occluded by the DV from the
view of LiDAR of ego vehicle. Besides, the geometry distribution of sur-
rounding vehicles relative to ego vehicle can also affect the ULM. Inspired
by this, we propose to detect the car roof points that have the largest MEA
ai( ) to represent the occlusion at each azimuth angle ui. Then the ULM is
correlated with three components: (i) The mean MEA across all the
azimuth angles. (ii) The geometry distribution is of DV relative to the ego-
vehicle. (iii) The convergence feature of the matching algorithm (match-
ing between the real-time point clouds with pre-built points map). The
proposed method can accurately estimate the ULM with a small standard
deviation. Real-time inference speed is obtained, which betters the super-
iority that our method generates. The listed strengths imply undoubted
popularity of the proposed method in ULM estimation for AV.

DV detection using real-time 3D point clouds: The objective of vehicle
detection [6] is to categorise and locate road objects of interests.
However, only the occlusions caused by road DV in each azimuth
angle are needed and significant in this Letter. Thus, we propose to
detect the DV via two steps: (i) Refine the 3D point cloud of interest
(point clouds inside the road) via curbs information in high definition
(HD) map (shown in Fig. 2). (ii) Detect the highest MEA ai( ) at each
azimuth angle ui. The received 3D point clouds can be represented as
Praw = { p1, p2, . . . , pi, . . . pn, t} at a given time t, where pi =
(xi, yi, zi) represents a single point in the coordinate system of
LiDAR. Then, the refined point clouds are denoted as Pr =
{ p1, p2, . . . , pi, . . . pm, t}. Accordingly, we transform the point clouds
Pr to Ssp in the spherical coordinate system via Algorithm 1. Ssp is indi-
cated by Ssp = s1, s2, . . . , si, . . . sk , t{ } at a given time t, where
si = ui, ai, Di( ) represents a point. ui and ai indicate the azimuth
angle and MEA, respectively. Di indicates the Euclidean distance

from a point to LiDAR. Points can have overlap across a certain
azimuth angle. We proposed to obtain the largest MEAs across all the
azimuth angles. The input of Algorithm 1 is the point clouds Praw and
high definition (HD) map. The outputs are the MEA in each azimuth
angle and the Euclidean distance between the point and the centre of
LiDAR. The resolution of the azimuth angle is 1° in Algorithm 1.
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Fig. 1 Illustration of traffic detection. The green points represent the real-
time point clouds from 3D LiDAR. The red line represents the connection
between the 3D LiDAR and detected roof Ssp
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Fig. 2 Demonstration of the high definition map. The red boxes indicate
the 3D building models. Coloured points indicate the points map. The
green curves represent the curbs and lane lines. The circled area is the
tested intersection. The curbs information is used to refine the point
clouds of interest

Algorithm 1: MEAs identification

Input: Point clouds Praw = p1, p2, . . . , pi, . . . , pn, t
{ }

, HD maps M
Output: Ssp = s1, s2, . . . , si, . . . , sk , t{ }, where k = 360
1. Initialise Ssp, set w = 0
2. Pr = refine Praw, M( )
3. while (w ≤ 360°)
4. w = w+ 1
5. for all point pi in Psp do

6. Di =
����������������
x2i + y2i + z2i
( )√

7. azii = atan yi/xi
( )

//azimuth angle

8. elei = atan
zi����������

x2i + y2i
( )√( )

//mask elevation angle

9. if (elei ≥ sw(aw)
10. sw � azii, elei, Di( )
11. end if
12. end for Psp

13. end while

Based on Algorithm 1, the MEAs are saved in SPolar. Higher MEA can
contribute more on the ULM as more of the pre-built point cloud map
blocked by the DVs. Therefore, we propose to calculate the mean
elevation mask angle as a quantitative indicator of occlusion as follows:

bele =
∑k
i=1

si ai( )/k (1)
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where si(·) is an operator to get the MEA ai. Each si indicates the
detected points belonging to DVs. In this case, occlusion caused by
DVs regarding the ego-vehicle is modelled.

Occlusion-based ULM estimation: As illustrated above, the quantity
bele is an indicator of occlusion from DVs. Thus, we propose to model
the total position uncertainty utraffic of LiDAR matching as follows:

utraffic = Kscale · bele · d (2)

Kscale denotes the scaling factor that will be tuned heuristically. d is the
summation [7] of errors between the original point clouds and matched
point clouds after the matching process. The utraffic denotes the total
ULM. The geometry distribution of DVs across the different azimuth
angles can contribute differently in the ULM in the x-, y- and z-axis of
LiDAR coordinate. Geometric dilution of precision (GDOP) is an effec-
tive parameter to model the geometry distribution of satellite in GNSS
navigation. Drawing the inspiration from this, we obtain the geometry dis-
tribution matrix T 3× 3( ) of DVs relative to the ego-vehicle as

T = GTG
( )−1

(3)

where G denotes the unit line of sight (LOS) vector between 3D LiDAR
and points in Ssp. The matrix G k × 3( ) can be calculated as

G =

cosa1 cos u1 cosa1 sin u1 sina1

. . . . . . . . .

cosai cos ui cosai sin ui sinai

. . . . . . . . .

cosak cos uk cosak sin uk sinak

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦ (4)

where ai and ui indicate the MEA and azimuth angles of points, respect-
ively. Then the ULM in three different directions (uxtraffic, u

y
traffic and

uztraffic) can be calculated as

uxtraffic = utraffic
T11��������������������

T2
11 + T2

22 + T2
33

( )√ (5)

uytraffic = utraffic
T22��������������������

T2
11 + T2

22 + T2
33

( )√ (6)

uztraffic = utraffic
T33��������������������

T2
11 + T2

22 + T2
33

( )√ (7)

Experimental results:: The performance of the proposed ULM esti-
mation method is evaluated in an intersection area with dense traffic
in Berkeley, California, USA (shown in Fig. 2). The HD map of the
test area is generated beforehand. During the test, the Velodyne 64
LiDAR is employed to capture real-time point clouds. The matching
between real-time point cloud and pre-built points map is implemented
based on the normal distribution transform [8]. The differential GNSS is
employed to provide the ground truth of localisation. The actual posi-
tioning error (summation of positioning error in the x, y and z directions)
of matching is the ground truth of uncertainty estimation, which is the
value that utraffic aims to approach.
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Fig. 3 Comparison of the conventional [4] and proposed the ULM estimation
method

The result of ULM estimation is shown in Fig. 3. The black curve and
red curve indicate the ground truth and conventional Hessian matrix-
based method of ULM estimation, respectively. We can see from
Fig. 3 that the ground truth (black curve) for ULM is about 0.4 m

during the 730 epochs. However, the Hessian matrix-based method
(red curve) overestimates the uncertainty all through the test with a
mean of about 0.85 m. More importantly, the ULM estimation fluctuates
dramatically over the test. With the aid of the proposed ULM estimation
method, the estimated uncertainty (blue curve) can well track the
actual positioning error with smaller fluctuation. The uncertainty
estimation errors are listed and compared in Table 1. It is shown that
the accuracy of the proposed method is 0.10 m with the small standard
deviation (0.12 m), while it is 0.51 m of uncertainty estimation error
using the conventional Hessian matrix-based method [4]. More
importantly, the standard deviation decreases from 0.45 to 0.12 m.
This result shows that the proposed method can effectively track the
trend of ULM.

Table 1: Uncertainty estimation errors of LiDAR matching using
the conventional Hessian matrix-based and the proposed
methods

Results Hessian matrix-based method [7] Proposed method utraffic( )
mean error 0.51 m 0.10 m

std 0.45 m 0.12 m

Conclusion: An ULM estimation method is presented in this Letter.
The results in Table 1 show that the proposed method can effectively
model the uncertainty caused by the surrounding DVs. The proposed
method outperforms the traditional Hessian matrix-based method
since the proposed method can effectively capture and model the
effects of DVs with a small standard deviation. Centimetre-level
positioning is required for AV, accurate ULM estimation is of equal
importance for safe AV. The experimental results illustrate the effective-
ness of the proposed method with the uncertainty estimation error of
0.1 m and the standard deviation of 0.12 m which is significantly
smaller than the Hessian matrix-based method.

© The Institution of Engineering and Technology 2019
Submitted: 14 December 2018 E-first: 8 February 2019
doi: 10.1049/el.2018.8075
One or more of the Figures in this Letter are available in colour online.

W. Wen, W. Zhan and M. Tomizuka (Department of Mechanical
Engineering, University of California at Berkeley, Berkeley, CA, USA)

X. Bai and L.-T. Hsu (Interdisciplinary Division of Aeronautical and
Aviation Engineering, Hong Kong Polytechnic University, Hung Hom,
Kowloon, Hong Kong)

✉ E-mail: lt.hsu@polyu.edu.hk

W. Wen: Also with Department of Mechanical Engineering, The Hong
Kong Polytechnic University, Hong Kong

References

1 Campbell, M., Egerstedt, M., How, J.P., et al.: ‘Autonomous driving
in urban environments: approaches, lessons and challenges’, Philos.
Trans. R. Soc. Lond. A, Math. Phys. Eng. Sci., 2010, 368, (1928),
pp. 4649–4672

2 Wan, G., Yang, X., Cai, R., et al.: ‘Robust and precise vehicle localiz-
ation based on multi-sensor fusion in diverse city scenes’, arXiv preprint
arXiv:1711.05805, 2017

3 Shetty, A.P.: ‘Gps-Lidar Sensor Fusion Aided by 3d City Models for
Uavs’, 2017

4 Akai, N., Morales, L.Y., Hirayama, T., et al.: ‘Toward Localization-
Based Automated Driving in Highly Dynamic Environments:
Comparison and Discussion of Observation Models’, The 21st IEEE
International Conference on Intelligent Transportation Systems, Maui,
HI, USA, November 2017

5 Akai, N., Morales, L.Y., and Murase, H.: ‘Mobile robot localization
considering class of sensor observations’. Proc. of the IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems (IROS), Madrid, Spain,
October 2018

6 Wu, B., Wan, A., Yue, X., et al.: ‘Squeezeseg: convolutional neural nets
with recurrent crf for real-time road-object segmentation from 3d lidar
point cloud’. 2018 IEEE Int. Conf. on Robotics and Automation
(ICRA), 2018

7 Akai, N., Morales, L.Y., Takeuchi, E., et al.: ‘Robust localization using
3d Ndt scan matching with experimentally determined uncertainty
and road marker matching’. Intelligent Vehicles Symp. (IV), 2017, 2017

8 Merten, H.: ‘The three-dimensional normal-distributions transform’,
Threshold, 2008, 10, p. 3

ELECTRONICS LETTERS 21st March 2019 Vol. 55 No. 6 pp. 348–349

 1350911x, 2019, 6, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/el.2018.8075 by H

ong K
ong Polytechnic U

niversity, W
iley O

nline L
ibrary on [25/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

mailto:

	Introduction
	DV detection using real-time 3D point clouds
	Occlusion-based ULM estimation
	Experimental results:
	Conclusion
	References

